LDF-CLOCK: The Least-Dirty-First CLOCK Replacement Policy for PCM-based Swap Devices

نویسندگان

  • Seunghoon Yoo
  • Eunji Lee
  • Hyokyung Bahn
چکیده

Phase-change memory (PCM) is a promising technology that is anticipated to be used in the memory hierarchy of future computer systems. However, its access time is relatively slower than DRAM and it has limited endurance cycle. Due to this reason, PCM is being considered as a high-speed storage medium (like swap device) or long-latency memory. In this paper, we adopt PCM as a virtual memory swap device and present a new page replacement policy that considers the characteristics of PCM. Specifically, we aim to reduce the write traffic to PCM by considering the dirtiness of pages when making a replacement decision. The proposed replacement policy tracks the dirtiness of a page at the granularity of a sub-page and replaces the least dirty page among pages not recently used. Experimental results with various workloads show that the proposed policy reduces the amount of data written to PCM by 22.9% on average and up to 73.7% compared to CLOCK. It also extends the lifespan of PCM by 49.0% and reduces the energy consumption of PCM by 3.0% on average.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental investigation on the effect of phase change materils (PCM) in solar compression refrigeration cycle efficiency

Saving energy is one of the most important challenges of todaychr('39')s world. Reducing electrical energy consumption in compressed air systems is one of the essential requirements for designing these systems. When using domestic air conditioners (dual air conditioners) in very hot areas (Khuzestan) their performance decreases and electric current consumption increases. Therefore, the use of n...

متن کامل

A Stack Model Based Replacement Policy for a NonVolatile Write Cache

The use of non-volatile write caches is an effective technique to bridge the performance gap between I/O systems and processor speed. Using such caches provides two benefits: some writes will be avoided because dirty blocks will be overwritten in the cache, and physically contiguous dirty blocks can be grouped into a single I/O operation. We present a new block replacement policy that efficient...

متن کامل

CLOCK-Pro: An Effective Improvement of the CLOCK Replacement

With the ever-growing performance gap between memory systems and disks, and rapidly improving CPU performance, virtual memory (VM) management becomes increasingly important for overall system performance. However, one of its critical components, the page replacement policy, is still dominated by CLOCK, a replacement policy developed almost 40 years ago. While pure LRU has an unaffordable cost i...

متن کامل

MAC: a novel systematically multilevel cache replacement policy for PCM memory

The rapid development of multi-core system and increase of data-intensive application in recent years call for larger main memory. Traditional DRAM memory can increase its capacity by reducing the feature size of storage cell. Now further scaling of DRAM faces great challenge, and the frequent refresh operations of DRAM can bring a lot of energy consumption. As an emerging technology, Phase Cha...

متن کامل

High-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop

Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015